229 lines
8.5 KiB
C
229 lines
8.5 KiB
C
#include "cnn.h"
|
||
|
||
|
||
|
||
// 将原始矩阵复制到填充后的矩阵中央
|
||
float* expand(const float* old_matrix, u8 old_matrix_length, u8 layer){
|
||
float* new_matrix = (float *)malloc(sizeof(float)*layer*(old_matrix_length+2)*(old_matrix_length+2));
|
||
memset(new_matrix, 0, sizeof(float)*layer*(old_matrix_length+2)*(old_matrix_length+2));
|
||
for(u8 l=0; l < layer; l++){
|
||
for (u8 i = 0; i < old_matrix_length; i++) {
|
||
for (u8 j = 0; j < old_matrix_length; j++) {
|
||
new_matrix[(i + 1) * (old_matrix_length+2) + (j + 1) +
|
||
l * (old_matrix_length+2) * (old_matrix_length+2)]
|
||
= old_matrix[i * old_matrix_length + j +
|
||
l * (old_matrix_length) * (old_matrix_length)];
|
||
}
|
||
}
|
||
}
|
||
return new_matrix;
|
||
}
|
||
|
||
//model 模型名字
|
||
//input_matrix 输入图像
|
||
//input_matrix_length 输入图像的边长:102
|
||
//c_rl 输出图像的边长:100
|
||
//返回卷积的结果
|
||
float* convolution(Model model_w, Model model_b, const float* input_matrix, u8 input_matrix_length){
|
||
// 初始化卷积层参数
|
||
u8 im_l = input_matrix_length;
|
||
u8 cr_l = input_matrix_length - 2;
|
||
float conv_temp; // 临时变量,用于存储卷积计算的中间结果
|
||
float* conv_rlst = (float *) malloc(sizeof (float) * model_w.num_kernels * (cr_l * cr_l));
|
||
memset(conv_rlst, 0, sizeof (float) * model_w.num_kernels * (cr_l * cr_l));
|
||
// 遍历30个卷积核(假设有30个通道)
|
||
|
||
for(u8 l=0;l<model_w.layer;l++){
|
||
for(u8 n=0; n<model_w.num_kernels; n++){
|
||
for(u8 row = 0; row < cr_l; row++) {
|
||
for (u8 col = 0; col < cr_l; col++) {
|
||
conv_temp = 0; // 每个输出像素初始化为0
|
||
// 进行3x3的卷积操作
|
||
for (u8 x = 0; x < 3; x++) {
|
||
for (u8 y = 0; y < 3; y++) {
|
||
// 将输入图像的对应像素与卷积核权重相乘,并累加到conv_temp
|
||
conv_temp += input_matrix[(l*(im_l*im_l)) + (row*im_l) + (col) + (x*im_l) + (y)] *
|
||
model_w.array[(x*3) + y + (n*(3*3))];
|
||
}
|
||
}
|
||
// 加上对应卷积核的偏置
|
||
conv_temp += model_b.array[n];
|
||
// 激活函数:ReLU(将小于0的值设为0)
|
||
if (conv_temp > 0)
|
||
conv_rlst[(n*(cr_l*cr_l)) + (row*cr_l) + (col)] = conv_temp; // 如果卷积结果大于0,存入结果数组
|
||
else
|
||
conv_rlst[(n*(cr_l*cr_l)) + (row*cr_l) + (col)] = 0; // 否则存入0
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return conv_rlst;
|
||
}
|
||
|
||
|
||
//num_kernels 卷积核的个数:32
|
||
//area 池化的面积:2*2
|
||
//input_matrix 输入图像
|
||
//input_matrix_length 输入图像的边长:100
|
||
//输出图像的边长:50
|
||
//返回池化的结果
|
||
float* pooling(Model model_w, const float* input_matrix, u8 input_matrix_length){
|
||
u8 im_l = input_matrix_length;
|
||
float pool_temp = 0; // 临时变量,用于存储池化操作的最大值
|
||
float* pool_rslt = (float *) malloc(sizeof (float)*model_w.num_kernels*im_l*im_l);
|
||
memset(pool_rslt, 0, sizeof (float)*model_w.num_kernels*im_l*im_l);
|
||
// 遍历30个通道(与卷积核数量相同)
|
||
for(u8 n=0; n<model_w.num_kernels; n++)
|
||
{
|
||
// 遍历输入图像的每一行,步长为2(2x2的池化窗口)
|
||
for(u8 row=0; row<im_l; row=row+2)
|
||
{
|
||
// 遍历输入图像的每一列,步长为2
|
||
for(u8 col=0; col<im_l; col=col+2)
|
||
{
|
||
pool_temp = 0; // 每个池化区域的最大值初始化为0
|
||
// 进行2x2的最大池化操作
|
||
for(u8 x=0; x<2; x++)
|
||
{
|
||
for(u8 y=0; y<2; y++)
|
||
{
|
||
// 更新当前池化区域的最大值
|
||
if(pool_temp <= input_matrix[row*im_l+col+x*im_l+y+n*(im_l*im_l)])
|
||
pool_temp = input_matrix[row*im_l+col+x*im_l+y+n*(im_l*im_l)];
|
||
}
|
||
}
|
||
// 将最大值存入池化结果数组
|
||
pool_rslt[(row/2)*(im_l/2)+col/2+n*((im_l/2)*(im_l/2))] = pool_temp;
|
||
}
|
||
}
|
||
}
|
||
return pool_rslt;
|
||
}
|
||
|
||
|
||
void print_rslt(float* rslt, u8 input_matrix_length, u32 length){
|
||
int _tmp = 0;
|
||
printf("[0:0]");
|
||
for (int i = 0; i < length; i++) {
|
||
printf("%f ",rslt[i]);
|
||
if ((i + 1) % input_matrix_length == 0) {
|
||
printf("\n[%d:%d]",++_tmp,i+1);
|
||
}
|
||
}
|
||
printf("\r\n\r\n");
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
|
||
int main(){
|
||
model_init();
|
||
model_write("all");
|
||
model_switchdata("data");
|
||
|
||
//第一层:填充102 * 102
|
||
float* expand_matrix_1 = expand(data.array, 100, 1);
|
||
// print_rslt(expand_matrix_1, 102, (1*102*102));
|
||
float* conv_rlst_1 = convolution(conv1_weight,conv1_bias,expand_matrix_1, 102);
|
||
// print_rslt(conv_rlst_1, 100, (32*100*100));
|
||
float* pool_rslt_1 = pooling(conv1_weight, conv_rlst_1, 100);
|
||
// print_rslt(pool_rslt_1, 50, (32*50*50));
|
||
|
||
//第二层:填充32 * 52 * 52
|
||
float* expand_matrix_2 = expand(pool_rslt_1, 50, 32);
|
||
// print_rslt(expand_matrix_2, 52, (1*52*52));
|
||
float* conv_rlst_2 = convolution(conv2_weight,conv2_bias,expand_matrix_2, 52);
|
||
// print_rslt(conv_rlst_2, 50, (1*50*50));
|
||
float* pool_rslt_2 = pooling(conv2_weight, conv_rlst_2, 50);
|
||
// print_rslt(pool_rslt_2, 25, (1*25*25));
|
||
|
||
//第三层:填充 64 * 27 * 27
|
||
float* expand_matrix_3 = expand(pool_rslt_2, 25, 64);
|
||
// print_rslt(expand_matrix_2, 52, (1*52*52));
|
||
float* conv_rlst_3 = convolution(conv3_weight,conv3_bias,expand_matrix_3, 27);
|
||
print_rslt(conv_rlst_3, 25, (1*25*25));
|
||
float* pool_rslt_3 = pooling(conv3_weight, conv_rlst_3, 25);
|
||
print_rslt(pool_rslt_3, 25, (1*12*12));
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
//// 隐藏层参数地址
|
||
// float *affine1_w; // 指向第一个全连接层权重的内存地址的指针
|
||
// float *affine1_b; // 指向第一个全连接层偏置的内存地址的指针
|
||
// affine1_param_init(); // 初始化全连接层参数
|
||
// float *affine1_rslt; // 指向存储隐藏层计算结果的内存地址的指针
|
||
// float affine1_temp; // 临时变量,用于存储全连接层的中间结果
|
||
//
|
||
//// 遍历100个神经元(假设隐藏层有100个神经元)
|
||
// for(int n=0; n<100; n++)
|
||
// {
|
||
// affine1_temp = 0; // 每个神经元的输出初始化为0
|
||
//
|
||
// // 进行矩阵乘法,将池化层输出展平为一维向量后,与全连接层权重进行点积
|
||
// for(int i=0; i<4320; i++)
|
||
// {
|
||
// affine1_temp = affine1_temp + pool_rslt_1[i] * affine1_w[i+4320*n];
|
||
// }
|
||
//
|
||
// // 加上对应神经元的偏置
|
||
// affine1_temp = affine1_temp + affine1_b[n];
|
||
//
|
||
// // 激活函数:ReLU(将小于0的值设为0)
|
||
// if(affine1_temp > 0)
|
||
// affine1_rslt[n] = affine1_temp; // 如果结果大于0,存入结果数组
|
||
// else
|
||
// affine1_rslt[n] = 0; // 否则存入0
|
||
// }
|
||
//
|
||
//
|
||
//
|
||
// float *affine2_w; // 指向第二个全连接层(输出层)权重的内存地址的指针
|
||
// float *affine2_b; // 指向第二个全连接层(输出层)偏置的内存地址的指针
|
||
// float affine2_temp; // 临时变量,用于存储输出层的中间结果
|
||
// affine2_param_init(); // 初始化输出层参数
|
||
//
|
||
// float affine2_rslt[10]; // 存储输出层的结果(假设输出层有10个神经元)
|
||
//
|
||
//// 比较输出层的最大值
|
||
// float temp = -100; // 用于存储最大值的临时变量,初始化为一个非常小的值
|
||
// int predict_num; // 用于存储预测的数字(对应最大值的索引)
|
||
//
|
||
//// 遍历10个输出神经元(假设有10个类别)
|
||
// for(int n=0; n<10; n++)
|
||
// {
|
||
// affine2_temp = 0; // 当前神经元的输出初始化为0
|
||
//
|
||
// // 进行矩阵乘法,将隐藏层的输出与输出层权重进行点积
|
||
// for(int i=0; i<100; i++)
|
||
// {
|
||
// affine2_temp = affine2_temp + affine2_w[i+100*n] * affine1_rslt[i];
|
||
// }
|
||
//
|
||
// // 加上对应神经元的偏置
|
||
// affine2_temp = affine2_temp + affine2_b[n];
|
||
// affine2_rslt[n] = affine2_temp; // 存储输出层的结果
|
||
//
|
||
// // 寻找最大值
|
||
// if(temp <= affine2_rslt[n])
|
||
// {
|
||
// temp = affine2_rslt[n]; // 更新最大值
|
||
// predict_num = n; // 记录最大值对应的类别索引
|
||
// }
|
||
// }
|
||
return 0;
|
||
}
|