_tmp
This commit is contained in:
92
cnn.c
92
cnn.c
@@ -19,56 +19,50 @@ float* expand(const float* old_matrix, u8 old_matrix_length, u8 layer){
|
||||
return new_matrix;
|
||||
}
|
||||
|
||||
//num_kernels 卷积核的个数:32
|
||||
//area 卷积的面积:3*3
|
||||
//model 模型名字
|
||||
//input_matrix 输入图像
|
||||
//input_matrix_length 输入图像的边长:102
|
||||
//输出图像的边长:100
|
||||
//c_rl 输出图像的边长:100
|
||||
//返回卷积的结果
|
||||
float* convolution(u8 num_kernels, u8 area, const float* input_matrix, u8 input_matrix_length, u8 layer){
|
||||
float* convolution(Model model_w, Model model_b, const float* input_matrix, u8 input_matrix_length){
|
||||
// 初始化卷积层参数
|
||||
u8 c_rl = input_matrix_length - 2;
|
||||
float conv_temp; // 临时变量,用于存储卷积计算的中间结果
|
||||
float* conv_rlst = (float *) malloc(sizeof (float)*layer*num_kernels*(input_matrix_length-2)*(input_matrix_length-2));
|
||||
memset(conv_rlst, 0, sizeof (float)*layer*num_kernels*(input_matrix_length-2)*(input_matrix_length-2));
|
||||
float* conv_rlst = (float *) malloc(sizeof (float) * model_w.num_kernels * model_w.layer * (c_rl*c_rl));
|
||||
memset(conv_rlst, 0, sizeof (float) * model_w.num_kernels * model_w.layer * (c_rl*c_rl));
|
||||
// 遍历30个卷积核(假设有30个通道)
|
||||
for(u8 l=0;l<layer;l++){
|
||||
for(u8 n=0; n<num_kernels; n++)
|
||||
{
|
||||
// 遍历输出图像的每一行(卷积输出大小为24x24)
|
||||
for(u8 row=0; row<(input_matrix_length-2); row++)
|
||||
{
|
||||
// 遍历输出图像的每一列
|
||||
for(u8 col=0; col<(input_matrix_length-2); col++)
|
||||
{
|
||||
conv_temp = 0; // 每个输出像素初始化为0
|
||||
// 进行5x5的卷积操作
|
||||
for(u8 x=0; x<area; x++)
|
||||
{
|
||||
for(u8 y=0; y<area; y++)
|
||||
{
|
||||
// 将输入图像的对应像素与卷积核权重相乘,并累加到conv_temp
|
||||
conv_temp += input_matrix[row*input_matrix_length+col+x*input_matrix_length+y +
|
||||
0
|
||||
] * conv1_weight.array[x*area+y+n*(area*area)+
|
||||
0
|
||||
];
|
||||
for(u8 n=0; n<model_w.num_kernels; n++){
|
||||
for(u8 l=0;l<model_w.layer;l++){
|
||||
// 遍历输出图像的每一行(卷积输出大小为24x24)
|
||||
for(u8 row=0; row<(c_rl); row++) {
|
||||
// 遍历输出图像的每一列
|
||||
for (u8 col = 0; col < (input_matrix_length - 2); col++) {
|
||||
conv_temp = 0; // 每个输出像素初始化为0
|
||||
// 进行3x3的卷积操作
|
||||
for (u8 x = 0; x < 3; x++) {
|
||||
for (u8 y = 0; y < 3; y++) {
|
||||
// 将输入图像的对应像素与卷积核权重相乘,并累加到conv_temp
|
||||
conv_temp += input_matrix[model_w.layer*(input_matrix_length*input_matrix_length)+row*28
|
||||
+col+(x*(input_matrix_length)+y)] * model_w.array[n*(model_w.layer*3*3)+l*(3*3)+x*3+y];
|
||||
}
|
||||
}
|
||||
// 加上对应卷积核的偏置
|
||||
conv_temp += model_b.array[n];
|
||||
// 激活函数:ReLU(将小于0的值设为0)
|
||||
if (conv_temp > 0)
|
||||
conv_rlst[row * (input_matrix_length - 2) + col +
|
||||
n * (input_matrix_length - 2) * (input_matrix_length - 2) +
|
||||
0
|
||||
] = conv_temp; // 如果卷积结果大于0,存入结果数组
|
||||
else
|
||||
conv_rlst[row * (input_matrix_length - 2) + col +
|
||||
n * (input_matrix_length - 2) * (input_matrix_length - 2) +
|
||||
0
|
||||
] = 0; // 否则存入0
|
||||
}
|
||||
// 加上对应卷积核的偏置
|
||||
conv_temp += conv1_bias.array[n];
|
||||
// 激活函数:ReLU(将小于0的值设为0)
|
||||
if(conv_temp > 0)
|
||||
conv_rlst[row*(input_matrix_length-2)+col+n*(input_matrix_length-2)*(input_matrix_length-2)+
|
||||
0
|
||||
] = conv_temp; // 如果卷积结果大于0,存入结果数组
|
||||
else
|
||||
conv_rlst[row*(input_matrix_length-2)+col+n*(input_matrix_length-2)*(input_matrix_length-2)+
|
||||
0
|
||||
] = 0; // 否则存入0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return conv_rlst;
|
||||
}
|
||||
|
||||
@@ -138,17 +132,17 @@ int main(){
|
||||
//第一层:填充102 * 102
|
||||
float* expand_matrix_1 = expand(data.array, 100, 1);
|
||||
print_rslt(expand_matrix_1, 102, (0*102*102));
|
||||
float* conv_rlst_1 = convolution(32, 3, expand_matrix_1, 102,1);
|
||||
float* conv_rlst_1 = convolution(conv1_weight,conv1_bias,expand_matrix_1, 102);
|
||||
print_rslt(conv_rlst_1, 32, (1*100));
|
||||
float* pool_rslt_1 = pooling(32, 2, conv_rlst_1, 100);
|
||||
|
||||
//第二层:填充102 * 102
|
||||
float* expand_matrix_2 = expand(pool_rslt_1, 50, 32);
|
||||
print_rslt(expand_matrix_2, 52, (0*52*52));
|
||||
float* conv_rlst_2 = convolution(64, 3, expand_matrix_2, 52,1);
|
||||
print_rslt(conv_rlst_2, 64, (1*50*50));
|
||||
float* pool_rslt_2 = pooling(64, 2, conv_rlst_2, 50);
|
||||
|
||||
// float* pool_rslt_1 = pooling(32, 2, conv_rlst_1, 100);
|
||||
//
|
||||
////第二层:填充102 * 102
|
||||
// float* expand_matrix_2 = expand(pool_rslt_1, 50, 32);
|
||||
// print_rslt(expand_matrix_2, 52, (0*52*52));
|
||||
// float* conv_rlst_2 = convolution(conv2_weight,conv2_bias,expand_matrix_2, 102);
|
||||
// print_rslt(conv_rlst_2, 64, (1*50*50));
|
||||
// float* pool_rslt_2 = pooling(64, 2, conv_rlst_2, 50);
|
||||
//
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -341,6 +341,8 @@ void model_init(){
|
||||
conv1_weight.name = "conv1_weight";
|
||||
conv1_weight.array = modelmym_init(conv1_weight.name);
|
||||
conv1_weight.maxlength = CONV1_WEIGHT_ARRSIZE;
|
||||
conv1_weight.layer = 1;
|
||||
conv1_weight.num_kernels = 32;
|
||||
|
||||
conv2_bias.name = "conv2_bias";
|
||||
conv2_bias.array = modelmym_init(conv2_bias.name);
|
||||
@@ -349,6 +351,8 @@ void model_init(){
|
||||
conv2_weight.name = "conv2_weight";
|
||||
conv2_weight.array = modelmym_init(conv2_weight.name);
|
||||
conv2_weight.maxlength = CONV2_WEIGHT_ARRSIZE;
|
||||
conv2_weight.layer = 32;
|
||||
conv2_weight.num_kernels = 64;
|
||||
|
||||
conv3_bias.name = "conv3_bias";
|
||||
conv3_bias.array = modelmym_init(conv3_bias.name);
|
||||
@@ -357,6 +361,8 @@ void model_init(){
|
||||
conv3_weight.name = "conv3_weight";
|
||||
conv3_weight.array = modelmym_init(conv3_weight.name);
|
||||
conv3_weight.maxlength = CONV3_WEIGHT_ARRSIZE;
|
||||
conv2_weight.layer = 64;
|
||||
conv2_weight.num_kernels = 128;
|
||||
|
||||
fc1_bias.name = "fc1_bias";
|
||||
fc1_bias.array = modelmym_init(fc1_bias.name);
|
||||
|
||||
@@ -14,6 +14,10 @@ typedef struct {
|
||||
float* array;
|
||||
u32 maxlength;
|
||||
u32 realength;
|
||||
|
||||
u8 layer;
|
||||
u8 num_kernels;
|
||||
|
||||
} Model;
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user